CF Lieges of Legendre
Solution sketch
When $k\ is\ odd$, $[0, 20]$ = {$0, 1, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2$}.
So for $number <= 4$, the $sg\ value$ needs to be handled differently. For all other numbers, if it is odd, $sg\ value = 0$, otherwise, $sg\ value = (sg\ value\ of (\frac{number}{2}) == 1 ? 2 : 1)$.
When $k\ is\ even$, $[0, 8]$ = {$0, 1, 2, 0, 1, 0, 1, 0, 1…$}. So for $number < 3$, the $sg\ value$ needs to be handled differently. For all other numbers, $number \% 2 == 1 ? 0 : 1$.