(Template) Connected component

BCC and SCC,使用 Tarjan 來求取。

BCC

一張無向圖上,不會產生關節點 (articulation point) 的連通分量,稱作「雙連通分量」(Biconnected Component)。

一張無向圖上,不會產生橋 (bridge) 的連通分量,稱作「橋連通分量」(Bridge-connected Component)。

Bridge-connected Component 模板

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
const int MAX_N = 5555;
vector<int> g[MAX_N];
int tt, dfn[MAX_N], low[MAX_N];
int bcc;
int belong[MAX_N]; // 縮點用
stack<int> s;
void dfs(int u, int p)
{
dfn[u] = low[u] = tt++;
s.push(u);
for (int i = 0; i < (int)g[u].size(); i++) {
int v = g[u][i];
if (v == p)
continue;
if (dfn[v] == -1) {
dfs(v, u);
low[u] = min(low[u], low[v]);
} else {
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
bcc++;
while (1) {
int v = s.top();
s.pop();
belong[v] = bcc;
if (v == u)
break;
}
}
}

Biconnected Component 模板

stack 塞入邊而不是塞入點,這樣就可以在找到 articulation point 時,得到每個團的資訊。

驗證:POJ 3177 Redundant Paths

求取 BCC 後縮點。縮點後最遠的兩葉子相連可以形成一個環,這需要做 (left + 1) / 2次。可以參考照篇文章來思考。

注意重邊。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
using namespace std;
const int MAX_N = 5555;
vector<int> g[MAX_N];
int tt, dfn[MAX_N], low[MAX_N];
int bcc;
int belong[MAX_N];
stack<int> s;
bool seen[MAX_N][MAX_N];
void dfs(int u, int p)
{
dfn[u] = low[u] = tt++;
s.push(u);
for (int i = 0; i < (int)g[u].size(); i++) {
int v = g[u][i];
if (v == p)
continue;
if (dfn[v] == -1) {
dfs(v, u);
low[u] = min(low[u], low[v]);
} else {
low[u] = min(low[u], dfn[v]);
}
}
if (low[u] == dfn[u]) {
bcc++;
while (1) {
int v = s.top();
s.pop();
belong[v] = bcc;
if (v == u)
break;
}
}
}
int main()
{
int n, m;
scanf("%d %d", &n, &m);
// memset(seen, 0, sizeof(seen)); // memset will cause MLE
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
if (seen[u][v])
continue;
seen[u][v] = seen[v][u] = true;
g[u].push_back(v);
g[v].push_back(u);
}
memset(dfn, -1, sizeof(dfn));
memset(low, -1, sizeof(low));
memset(belong, 0, sizeof(belong));
bcc = 0;
tt = 0;
for (int i = 1; i <= n; i++)
if (dfn[i] == -1) {
dfs(i, -1);
}
int degree[MAX_N];
memset(degree, 0, sizeof(degree));
for (int i = 1; i <= n; i++) {
for (int j = 0; j < (int)g[i].size(); j++) {
int v = g[i][j];
if (belong[i] != belong[v]) {
degree[belong[v]]++;
degree[belong[i]]++;
}
}
}
int ans = 0;
for (int i = 1; i <= n; i++) {
if (degree[i] == 2)
ans++;
}
printf("%d\n", (ans + 1) / 2);
return 0;
}

SCC

模板

in_stack 檢查可以用下圖思考。

$$
A \rightarrow B \
C \rightarrow B \
D \rightarrow C
$$

如果今天走訪順序為 $B, A, D$,沒檢查 in_stack 的話,$C$ 的 low 會變成 $B$ 的,造成 $C$ 和 $D$ 在相同 SCC,但是這是錯誤的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
const int MAX_N = 11111;
vector<int> g[MAX_N];
int tt = 0, dfn[MAX_N], low[MAX_N];
stack<int> s;
int belong[MAX_N];
bool in_stack[MAX_N];
int scc = 0;
void dfs(int u, int p)
{
dfn[u] = low[u] = tt++;
s.push(u);
in_stack[u] = true;
for (int i = 0; i < (int)g[u].size(); i++) {
const int &v = g[u][i];
if (dfn[v] == -1) {
dfs(v, u);
low[u] = min(low[u], low[v]);
} else {
if (in_stack[v])
low[u] = min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
scc++;
while (1) {
int v = s.top();
s.pop();
belong[v] = scc;
in_stack[v] = false;
if (u == v)
break;
}
}
}

縮 SCC 點之後,如果只有一個 DAG,那 out degree 為零的那個點就會答案,因為大家都會到達那裡!詳細解釋請看這裏

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
using namespace std;
const int MAX_N = 11111;
vector<int> g[MAX_N];
int tt = 0, dfn[MAX_N], low[MAX_N];
stack<int> s;
int belong[MAX_N];
bool in_stack[MAX_N];
int scc = 0;
void dfs(int u, int p)
{
dfn[u] = low[u] = tt++;
s.push(u);
in_stack[u] = true;
for (int i = 0; i < (int)g[u].size(); i++) {
const int &v = g[u][i];
// if(v == p) // wrong condition, sample input can reveal this error
// continue;
if (dfn[v] == -1) {
dfs(v, u);
low[u] = min(low[u], low[v]);
} else {
if (in_stack[v])
low[u] = min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
scc++;
while (1) {
int v = s.top();
s.pop();
belong[v] = scc;
in_stack[v] = false;
if (u == v)
break;
}
}
}
int main()
{
int n, m;
while (scanf("%d %d", &n, &m) == 2) {
for (int i = 0; i < n; i++)
g[i].clear();
for (int i = 0; i < m; i++) {
int u, v;
scanf("%d %d", &u, &v);
u--;
v--;
g[u].push_back(v);
}
tt = 0;
scc = 0;
memset(dfn, -1, sizeof(dfn));
memset(low, -1, sizeof(low));
memset(belong, 0, sizeof(belong));
memset(in_stack, false, sizeof(in_stack));
for (int i = 0; i < n; i++) {
if (dfn[i] == -1) {
dfs(i, -1);
}
}
int inDeg[scc + 1], outDeg[scc + 1];
memset(inDeg, 0, sizeof(inDeg));
memset(outDeg, 0, sizeof(outDeg));
for (int i = 0; i < n; i++) {
for (int j = 0; j < (int)g[i].size(); j++) {
int u = i;
int v = g[i][j];
if (belong[u] != belong[v]) {
inDeg[belong[v]]++;
outDeg[belong[u]]++;
}
}
}
int cnt_no_out = 0, who;
for (int i = 1; i <= scc; i++) { // 注意 scc 區間,別被弄混了
if (outDeg[i] == 0) {
cnt_no_out++;
who = i;
}
}
if (cnt_no_out != 1)
printf("0\n");
else {
int ans = 0;
for (int i = 0; i < n; i++)
if (belong[i] == who)
ans++;
printf("%d\n", ans);
}
}
return 0;
}